

CULTIVO MÍNIMO NA CANA-DE-AÇÚCAR

Fernanda de Paiva Badiz Furlaneto

Med. Vet., Ms., PqC do Polo Regional do Centro Oeste/APTA fernandafurlaneto@apta.sp.gov.br

Fernando Bergantini Miguel

Adm. Emp., Ms., PqC do Polo Regional da Alta Mogiana/APTA fbmiguel@apta.sp.gov.br

Regina Kitagawa Grizotto

Eng. Alim., Dr., PqC do Polo Regional da Alta Mogiana/APTA regina@ital.sp.gov.br

Existem três formas de preparo do solo para a implantação e/ou reforma do canavial: a) plantio convencional, que se inicia com as operações de aração e gradagem, e quando o solo apresenta camada compactada, faz-se o rompimento por meio de subsolagem. b) cultivo mínimo, onde se realiza apenas uma gradagem leve para remover a soqueira remanescente, seguida da operação de sulcação e adubação e, c) plantio direto, que utiliza apenas a operação de aplicação do herbicida para evitar o desenvolvimento do canavial a ser reformado, sendo a operação de sulcação efetuada diretamente nas entrelinhas das plantas existentes no local (SEGATO et al., 2006).

O preparo convencional do solo, geralmente se compõe de uma aração, seguida de duas gradagens para destorroamento e nivelamento. O preparo do solo também pode ser feito com subsoladores, arados e grades. Essa sequência de operações tem por objetivo destruir antigas soqueiras, minimizar a ocorrência de plantas invasoras e modificar a estrutura do solo proporcionando melhores condições de densidade e aeração (AZEVEDO, 2008).

A descompactação do solo, também, pode ser feita na reforma do canavial. Nessa ocasião, empregam-se implementos que efetivamente descompactam o solo (subsolador) e que atuam na subsuperfície. SOUZA et al. (2005), destacaram que o preparo do solo inadequado pulveriza a superfície dos solos, deixando-os mais susceptíveis ao processo de erosão propiciando a formação de impedimentos físicos logo abaixo das camadas movimentadas pelos equipamentos. Tal degradação, com todas as suas implicações e conseqüências negativas, tem resultado no desafio de viabilizar sistemas de produção que possibilitem maior eficiência energética e conservação ambiental (KLUTHCOUSKI et al., 2000).

Assim, a utilização de sistemas de preparo com mínimo ou nenhum revolvimento do solo tem sido cada vez mais utilizado, por promover inúmeros benefícios, como melhoria da estrutura, porosidade, retenção e infiltração da água no solo (DUARTE JUNIOR & COELHO, 2008), atividade biológica, conteúdo de carbono orgânico e nitrogênio total do solo, capacidade de troca de cátions e conteúdos de nutrientes (HAMZA & ANDERSON, 2005). DEMATTÊ (1980) descreveu que o cultivo mínimo na cana-de-açúcar é potencialmente aplicável em aproximadamente 40% da área do Estado de São Paulo.

O sistema de cultivo mínimo consiste em um preparo mínimo do solo para o plantio controlando-se as invasoras sem revolver o solo. O método tornou-se viável na cana-de-açúcar com a descoberta de um herbicida sistêmico, não seletivo, de absorção foliar e não residual que permite eliminar a soqueira antiga para a implantação do cultivo mínimo nas áreas de reforma de canaviais.

Basicamente, elimina-se a soqueira da cana usando herbicida e em seguida, a terra é sulcada nas entrelinhas para o novo plantio (DIAS, 2001). Como o custo do herbicida é alto no Brasil, pode-se destruir a soqueira com o arrancador de soqueira trabalhando a pequena profundidade. A destruição mecânica pode ser executada por enxadas rotativas ou por arrancador de soqueira que, juntamente com o sulcador, possibilita, em uma só operação, a destruição da cultura anterior e a abertura do sulco para o novo plantio (ORLANDO FILHO & ZAMBELLO, 1983).

Destacando resultados relevantes

TAVARES et al. (2010) avaliaram os efeitos de diferentes sistemas de preparo do solo e de colheita (cana crua e queimada) sobre o crescimento e produtividade da cana planta em solo classificado como Argissolo Amarelo textura arenosa/média, no município de Linhares, Espírito Santo. O cultivo mínimo consistiu na destruição da soqueira com a utilização de herbicidas e abertura de sulcos para o plantio sem o prévio revolvimento do solo. No preparo convencional realizou-se uma aração e duas gradagens pesadas. A colheita de cana crua consistiu na despalha manual. Na colheita de cana queimada, o fogo foi ateado previamente em todo o perímetro da área. Analisou-se o crescimento, aporte de matéria orgânica e rendimento da cana-de-açúcar.

O cultivo mínimo propiciou, inicialmente, aumento do diâmetro do colmo e maior produtividade de folhas na colheita. O perfilhamento foi melhor no preparo convencional. Porém, ao longo do período, todos os dados biométricos se igualaram ao final do ciclo da cana planta. Com a manutenção da palhada na superfície houve aumento no padrão de perfilhamento na fase intermediária e final da cultura. Após 16 anos de cultivo da cana-deaçúcar com e sem queima do palhiço observou-se maior produtividade de ponteiros no sistema cana crua promovendo incrementos no rendimento dos colmos. Concluiu-se que sistema de cultivo mínimo e cana crua são práticas que potencializam a adição e o acúmulo de material orgânico no sistema.

ANDRÉ (2009) avaliou os efeitos de quatro sistemas de preparo de solo utilizados na cultura do amendoim sobre o desenvolvimento da cultura da cana-de-açúcar em sucessão em solo tipo Latossolo Vermelho Distrófico, no município de Guariba/SP. Os sistemas de preparo foram: plantio direto (PD), cultivo mínimo (CM), cultivo mínimo + gradagem (CM+G) e preparo convencional (PC). As subparcelas consistiram na presença ou ausência de palhada de cana-de-açúcar antes do preparo. No sistema de preparo de solo Plantio direto (PD) o solo foi revolvido apenas ao longo das linhas, por ocasião da semeadura, após a erradicação química da soqueira; no Cultivo mínimo (CM) foi utilizado um escarificador de hastes rígidas; no Cultivo mínimo + gradagem (CM+G) após a erradicação da soqueira com *gliphosate* utilizou-se um escarificador de hastes rígidas e uma gradagem niveladora; no Preparo convencional (PC) foi usado uma grade intermediária, e grade niveladora, após a erradicação química da soqueira.

O sistema de preparo convencional apresentou maior produtividade da cana-de-açúcar em relação aos demais preparos, embora não haja diferença significativa dos preparos de

cultivo mínimo + gradagem e PD. A eliminação da palhada de cana-de-açúcar antes do preparo do solo não influenciou nos atributos físicos do solo e na produtividade da cultura da cana-de-açúcar. A presença ou ausência de palhada não interferiu na produtividade e nem nos atributos físicos do solo em estudo. A maior produtividade de cana-de-açúcar foi obtida no PC. O CM teve os melhores resultados com relação aos atributos físicos do solo, porém teve a menor produtividade.

CAMILLOTI et al. (2005) no experimento realizado na Fazenda Ouro da Açucareira Corona, Usina Bonfim, no município de Guariba-SP, em Latossolo Vermelho distrófico típico sob cultivo de cana crua avaliaram o efeito prolongado de sistemas de preparo do solo, com e sem cultivo da soqueira.

Foram estudados quatro sistemas de preparo do solo: 1) controle da soqueira com duas gradagens, subsolagem e mais uma gradagem de nivelamento; 2) controle da soqueira com herbicida e uma subsolagem; 3) controle da soqueira com herbicida; 4) controle da soqueira com herbicida, aração com arado de aivecas e uma gradagem de nivelamento. Testaramse, ainda, tratamentos secundários com cultivo e sem cultivo da soqueira. Os aspectos analisados corresponderam à porosidade total, macroporosidade, microporosidade e densidade do solo, perfilhamento e da produtividade da cultura.

Nas camadas do solo abaixo de 10 cm observou-se sensível redução da macroporosidade com o correspondente aumento da microporosidade após quatro colheitas da cana-de-açúcar, independentemente dos sistemas de preparo do solo e cultivo da soqueira. Após esse mesmo período houve aumento pronunciado na densidade do solo para as camadas compreendidas entre 20 e 50 cm, independentemente do manejo do solo.

Os sistemas de preparo do solo, cultivo da soqueira e épocas de amostragem não revelaram mudanças consistentes na densidade do solo. O cultivo da soqueira favoreceu o aumento da macroporosidade com subseqüente decréscimo na microporosidade, sendo o efeito inverso observado após a colheita. Os sistemas de preparo do solo e de cultivo da soqueira não afetaram o perfilhamento e produtividade da cultura.

Principais vantagens do cultivo mínimo na Cana-de-açúcar

1- Possibilidade de plantio em épocas chuvosas, o que pode significar a antecipação do plantio em até alguns meses.

- 2- Utilização mais intensa da área de plantio, já que o intervalo entre a colheita e o replantio é menor.
- 3- Redução da erosão.
- 4- Redução do uso de máquinas, implementos e combustível.
- 5- Controle de plantas daninhas, como a tiririca e a grama-seda (PEDROTTI et al., 2001).

Desvantagens do cultivo mínimo de Cana-de-açúcar

- 1- O método não pode ser aplicado onde há necessidade de mudar o esquema de campo e o alinhamento das ruas. Porém, segundo HADLOW & MILLARD (1977), pode-se realizar a sulcação ao lado do alinhamento e espaçamento antigo desde que se espere o tempo necessário para a translocação do herbicida (15 dias).
- 2- Não pode ser aplicado nas áreas que necessitam de calcário.
- 3- Não se deve aplicar o método onde há necessidade de combater pragas da soqueira através da exposição e fragmentação (ocorrência de *Migdolus* e *Metamasius*).
- 4- Há dificuldade de aplicar o cultivo mínimo onde se deseja realizar adubação verde e posteriormente incorporá-la ao solo (AZEVEDO, 2008).

Custo Total de Produção

No Estado de São Paulo, o custo operacional de produção da cana-de-açúcar, por hectare, no sistema de plantio convencional, ano 2009, para uma produtividade esperada de 115 ton . ha⁻¹(1º corte), 94 ton . ha⁻¹ (2º corte), 83 ton . ha⁻¹ (3º corte), 74 ton . ha⁻¹ (4º corte), 63 ton . ha⁻¹ (5º corte), sendo a média de 86 ton . ha⁻¹, foi equivalente a R\$ 4.343 (implantação da lavoura), R\$ 4.984 (1º corte), R\$ 4.366 (2º corte), R\$ 4.155 (3º corte), R\$ 3.761 (4º corte), R\$ 3.438 (5º corte). O custo de produção por tonelada correspondeu a R\$ 43,3 (1º corte), R\$ 46,5 (2º corte), R\$ 50,1 (3º corte), R\$ 50,8 (4º corte), R\$ 54,6 (5º corte). O preço da tonelada de cana posta na esteira da usina foi de R\$ 35,5 (tonelada CIF) (ANUÁRIO DA AGRICULTURA BRASILEIRA, 2010) (Tabela 1).

BENEDINI & CONDE (2008) descreveram que no cultivo mínimo o custo de produção da cana-de-açúcar diminui aproximadamente 30% quando comparado com o sistema de plantio tradicional.

Tabela 1. Custo operacional de produção de cana crua no Estado de São Paulo, ano

Descrição	Imp. Lavoura	1º corte	2º corte	3º corte	4º corte	5º corte
Operações máquinas	1.307,00	2.429,00	2.046,00	1.874,00	1.681,00	1.480,00
Operações manuais	562	63	63	56	46	46
Insumos	2.028,00	765	765	855	765	765
Adm e outros	446	1727	1492	1370	1269	1147
COT (R\$/ha)	4.343,0	4.984,0	4.366,0	4.155,0	3.761,0	3.438,0
COT (R\$/t)		43,3	46,5	50,1	50,8	54,6

2009.

Obs: Produtividade 9t/ha0 = 115 (1° corte), 94 (2° corte), 83 (3° corte), 74 (4° corte), 63 (5° corte). Média = 86 t/ha.

Fonte: Anuário da Agricultura Brasileira, 2010.

No cultivo da cana-de-açúcar a demanda energética concentra-se principalmente na implantação da cultura devido ao uso intensivo de maquinários para a preparação do solo (SALLA et al., 2009). Nesse momento ocorre o maior consumo de óleo diesel, totalizando quase 100 L . ha-1. ano-1 (Tabela 2). Nas operações de manutenção das socas, a utilização de máquina é menor, sendo o consumo menor que 9 L . ha-1 . ano-1. O total da demanda energética das operações agrícolas no ciclo cana-planta e cana-soca correspondem a 4.732 e 411,6 MJ . ha-1. Estima-se que a demanda energética do preparo de solo pode ser reduzida em torno de 37% com a implantação do cultivo mínimo em lavouras canavieiras (SOARES et al., 2009).

Tabela 2. Consumo de energia nas operações agrícolas para renovação e manutenção de canaviais ao longo de um ciclo de produção de cana-de-açúcar no Brasil, em unidade óleo diesel combustível, por hectare, por ano.

0					
Op. agrícola (ciclo cana-planta)	Equipamento	L/h	ha/h	L/ha	MJ/ha
Aplicação calcário	MF 290	6,0	1,8	3,4	161,0
Incorporação restos culturais	Valmet 1280	12,8	1,9	6,9	330,4
Aração pesada I	CAT D6	27,6	2,0	13,9	665,7
Subsolagem	CAT D6	26,0	1,2	22,4	1.070,4
Aração pesada II	CAT D6	27,6	2,0	13,5	646,1
Aração pesada III	CAT D6	27,6	2,0	13,5	646,1
Gradagem	CAT D6	13,0	2,5	5,2	246,4
Sulcamento	MF 660	11,5	1,3	9,1	435,9
Dist. Toletes	MF 275	3,3	0,8	4,2	199,5
Fech .sulcos/aplic. Inseticida	MF 275	4,8	2,5	1,9	91,0
Aplicação herbicida	Forf 4610	4,0	3,3	1,2	57,9
Capina entre linhas	Valmet 880	5,5	1,4	3,8	182,4
Total		169,7	22,7	99,1	4.732,8
Op. agrícola (ciclo cana-soca)					
Remoção dos resíduos	MF 275	4,0	1,4	2,9	139,4
Capina entre linhas	Valmet 1580	9,2	2,0	4,5	214,3
Aplicação de herbicidas	Ford 4610	4,0	3,3	1,2	57,9
Total		17,2	6,7	8,6	411,6

Obs: A) Valor calorífico de 1 litro de óleo diesel - 43,73 MJ. B) Dados baseados em um sistema de produção composto por um ciclo de cana-planta e quatro canassocas, totalizando 5 anos de cultivo.

Fonte: Soares et al. (2009).

Considerações Finais

O cultivo mínimo é uma prática que potencializa a adição e o acúmulo de material orgânico no sistema produtivo.

Por ser o cultivo mínimo na cana-de-açúcar uma técnica em desenvolvimento deve-se utilizar esse tipo de preparo de solo com cuidado e em parcelas experimentais na propriedade rural.

Os resultados dessa tecnologia relacionam-se diretamente com o tipo de solo do local, além do pacote tecnológico adotado no campo.

O custo total de produção e a demanda de energética pode ser reduzida com a implementação do cultivo mínimo em lavouras de cana-de-açúcar no Estado de São Paulo.

Referências

ANDRÉ, J.A. **Sistemas de preparo de solo para cana-de-açúcar em sucessão com amendoim**. 2009. 32p. Dissertação (Mestrado em Agronomia)- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, 2009.

ANUÁRIO DA AGRICULTURA BRASILEIRA. **Cana-de-açúcar**. Agra FNP: São Paulo, p.239-262, 2010.

AZEVEDO, M.C.B. Efeito de três sistemas de manejo físico do solo no enraizamento e na produção de cana-de-açúcar. 2008. 100p. Tese (Doutorado)- Universidade Estadual de Londrina, Londrina, 2008.

BENEDINI, M.S.; CONDE, A.J. Sistematização de área para a colheita mecanizada da canade-açucar. **Revista Coplana**, Guariba, novembro, p. 23-25, 2008.

CAMILOTTI, F.; ANDRIOLI, I.; DIAS, F.L.F.; CASAGRANDE, A.A.; SILVA, A.R.; MUTTON, M.A.; CENTURION, J.F. Efeito prolongado de sistemas de preparo do solo com e sem cultivo de soqueira de cana crua em algumas propriedades físicas do solo. **Engenharia Agrícola**, v.25, n.1, p.189-198, 2005.

DEMATTÊ, J.L.I. Levantamento detalhado dos solos do campus experimental de Ilha Solteira. Piracicaba: ESALQ,USP, 1980. 114p.

DIAS, F.L.F.; CASAGRANDE, A.A.; CAMPOS, M.S.; ANDRIOLI, I. Estudo agroeconômico de sistemas de preparo do solo em área de colheita mecanizada de cana crua. **STAB**, Ribeirão Preto, v.19, n.8, p.6-8, 2001.

DUARTE JUNIOR, J.B.; COELHO, F.C. A cana-de-açúcar em sistema de plantio direto comparado ao sistema convencional com e sem adubação. **Revista Brasileira de Engenharia Agrícola e Ambiental**, v.12, n.6, p.576-583, 2008.

KLUTHCOUSKI, J. et al. Integração lavoura-pecuária pelo consórcio de culturas anuais com forrageiras, em áreas de lavoura, nos sistemas direto e convencional. Santo Antonio de Goiás, GO: Embrapa Arroz e Feijão, 2000. 28 p. (Circular Técnica, 38).

HADLOW, W.; MILLARD, E.W. Minimum tillage: a practical alternative to ploughing in the south African sugar industry, **ISSCT Procs**, n.6, p.891, 1977.

HAMZA, M.A.; ANDERSON, W.K. Soil compaction in cropping systems: a review of the nature, causes and possible solutions. **Soil Tillage Research**, v.82, p.121-145, 2005.

ORLANDO FILHO, J.; ZAMBELLO, E. J. **Distribuição e conservação dos solos com cana-de-açúcar no Brasil**. In: ORLANDO FILHO, J. (Ed.). Nutrição e adubação da cana-de-açúcar no Brasil. Piracicaba: IAA/Planalsucar, 1983. v.2, p.41-73.

PEDROTTI, A.; PAULETTO, E.A.; CRESTANA, S.; FERREIRA, M.M.; DIAS JUNIOR, M.S.; GOMES, A.S.; TURATTI, A.L. Resistência mecânica a penetração de um Planossolo submetido a diferentes sistemas de cultivo. **Revista Brasileira de Ciência de Solo**, Viçosa, v.25, n.3, p.521-529, 2001.

SALLA, D.A.; FURLANETO, F.P.B.; CABELLO, C.; KANTHACK, R.A.D. Avaliação energética da produção de etanol utilizando como matéria-prima a cana-de-açúcar. **Cien. Rural**, v.39, n.8, p. 2516-2520, 2009.

SEGATO, S.V.; MATTIUZ, C.F.M.; MOZAMBANI, A.E. **Aspectos fenológicos da cana-de-açúcar**.In: SEGATO et al. Atualização em produção de cana-de-açúcar. Piracicaba: Livroceres, 2006. p.19-36.

SOARES, L.H.B.; ALVES, B.J.R.; URQUIAGA, S.; BODDEY, R.M. Mitigação das emissões de gases efeito estufa pelo uso de etanol da cana-de-açúcar produzido no Brasil. Embrapa, Rio de Janeiro, 2009. 14p. (Circular Técnica, 27).

SOUZA, Z.M.; PRADO, R.M.; PAIXÃO, A.C.S.; CESARIN, L.G. **Sistemas de colheita e manejo da palhada de cana-de-açúcar**. Pesquisa Agropecuária Brasileira, v. 4, n. 2, p.249-256, 2005.

TAVARES, O.C.H.; LIMA, E.; ZONTA, E. Crescimento e produtividade da cana planta cultivada em diferentes sistemas de preparo do solo e de colheita. **Acta Scientiarum. Agronomy**, Maringá, v.32, n.1, p.61-68, 2010.